GRID MODERNIZATION INITIATIVE
PEER REVIEW

GMLC 1.3.5 – DER Siting and Optimization tool for California

JOHN GROSH & GONÇALO CARDOSO

April 18-20, 2017
Sheraton Pentagon City – Arlington, VA
Project Description
Prototype framework for integrated distributed resource planning and optimization tool able to identify DER adoption patterns, microgrid sites, and evaluate DER impacts on the distribution and transmission grid.

Value Proposition
- Integrate private DER investment and dispatch decisions in grid planning
- Capture distribution and transmission grid interactions
- Unique methodology enables holistic view on grid impacts of DER

Project Objectives
- DER penetration patterns and operational strategies
- Identify sites with economic potential for microgrid and DER
- Address policy incentives and value of DER as grid assets
- Consider network constraints in the DER location problem
- Evaluate impacts of DER on the bulk electric grid system
- California as starting point for wider application (e.g. NY)
Project Participants and Roles

John Grosh, Liang Min - LLNL (Current lead) – T&D power flow co-simulation Lead, feeder data conversion, Demonstration, Dissemination

Michael Stadler, **Gonçalo Cardoso - LBNL (Original lead, Plus One)** – Behind-the-meter DER modeling, Model Integration, Model Automation, Demonstration, Dissemination, Coordination

Sila Kiliccote - SLAC (Plus One) – Mapping and Results Visualization Lead, Demonstration, Dissemination

Anthony Florita - NREL – Load disaggregation Lead, feeder data conversion, Demonstration

Robert Lofaro - BNL – Support on T&D power flow, Data collection, Load disaggregation, Demonstration

Jianhui Wang - ANL – Support on T&D power flow, Mapping, Demonstration

CPUC, PGE, SCE + External Advisory Committee

PROJECT FUNDING

<table>
<thead>
<tr>
<th>Lab</th>
<th>FY16 $</th>
<th>FY17 $</th>
<th>FY18 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBNL</td>
<td>114,107</td>
<td>315,893</td>
<td>-</td>
</tr>
<tr>
<td>SLAC</td>
<td>45,000</td>
<td>215,000</td>
<td>-</td>
</tr>
<tr>
<td>LLNL</td>
<td>65,000</td>
<td>170,000</td>
<td>-</td>
</tr>
<tr>
<td>NREL</td>
<td>73,333</td>
<td>56,667</td>
<td>-</td>
</tr>
<tr>
<td>BNL</td>
<td>53,333</td>
<td>76,667</td>
<td>-</td>
</tr>
<tr>
<td>ANL</td>
<td>24,333</td>
<td>90,667</td>
<td>-</td>
</tr>
</tbody>
</table>

*Total funding: $1.3M
Duration: 18 (16) months
Due: End of Sep 2017*
DER Siting and Optimization tool for California

Relationship to Grid Modernization MYPP

MYPP Vision: The future grid will solve the challenges of seamlessly integrating conventional and renewable sources, storage, and central and distributed generation (…)

Direct relationship to MPYY vision by delivering a tool to **estimate DER impacts on the electric grid**

(Behind-the-meter modeling + T&D co-simulation + Visualization)

5.1.2 – **Develop methods for integrating distribution into system-wide planning,** (…) including distributed generation, demand response, electric vehicles, and energy storage

5.1.8 – **Develop methodologies and tools to produce simple-to-use desktop computer models from HPC-generated simulations and economic analysis**

5.2.2 – **Scale modeling framework to the regional level.**

Develop associated models for load, distributed generation, energy storage, and controls to enable the design and evaluation of future EMS/DMS/BMS architectures and novel wide-area sensor-control networks

2.2.10 – **Establish and test methodologies for enabling optimal dispatch of energy storage to serve multiple grid services**
DER Siting and Optimization tool for California Approach

<table>
<thead>
<tr>
<th>Task</th>
<th>Task Description</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestones</td>
<td></td>
<td>MS</td>
<td>MS</td>
<td></td>
<td>GNG</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Integrated T&D Modeling</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mapping Platform</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Model Automation for DER Adoption Patterns</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Characterization of Feeder Loads</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Demonstration and DER Market Concepts</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dissemination and Training</td>
<td></td>
</tr>
</tbody>
</table>

Task 1 – Integrated T&D Modeling
- Develop CA-representative integrated T&D power-flow model
- Collect, convert, test, and validate datasets required to enable T&D co-simulation

Task 2 – Mapping Platform
- Develop mapping and visualization capabilities
- Integrate all three main model components: behind-the-meter models, T&D model, visualization

Task 3 – Model Automation for DER Adoption Patterns
- Collect new DER-CAM datasets / update existing ones
- Enable automated DER-CAM model creation, parallel optimizations, automated data exchange

Task 4 – Characterization of Feeder Loads
- Identify and collect distribution datasets required to build representative CA T&D model
- Develop and apply load disaggregation methods

Task 5 – Demonstration and DER Market Concepts
- Select and conduct a demonstration case focusing on how this project complements and/or exceeds current DRP process
- Develop high-level DER market concepts focusing on revenue streams of DER-based solutions and DER potential as grid asset

Task 6 – Dissemination and Training
- Prepare project specific documentation and scientific publications
- Develop interactive training material, tutorial videos, and organize training sessions

Uniqueness: Integrated modeling tool brings together customer-oriented *behind-the-meter modeling* with *T&D co-simulation* and custom *visualization* capabilities.
Key Project Milestones

<table>
<thead>
<tr>
<th>Milestone (FY16-FY18)</th>
<th>Status</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestone #1 – Quarterly Progress Measure:</td>
<td>Completed</td>
<td>6/30/2016</td>
</tr>
<tr>
<td>Completed initial testing of PG&E distribution data (1.1); Initiated IOU GIS survey (2.1); Collected residential load data for DER-CAM and created residential load database (3.1 and 3.2); Engaged with IOUs to collect feeder data (4.1);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone #2 – Quarterly Progress Measure:</td>
<td>Completed</td>
<td>9/30/2016</td>
</tr>
<tr>
<td>Completed PG&E distribution data collection, conversion and validation (1.1); Completed initial testing of SCE distribution data (1.2); Completed IOU GIS survey and identified data exchange needs for the co-simulation platform (2.1); Completed data collection and database upgrades for DER-CAM (3.1 and 3.2); Completed feeder data collection and load data disaggregation (4.1 and 4.2) – End of Task 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Milestone #1:</td>
<td>Completed</td>
<td>12/31/2016</td>
</tr>
<tr>
<td>Completed SCE distribution data collection, conversion and validation (1.2); Completed T&D modeling and co-simulation integration (1.3) – End Of Task 1; Completed mapping platform development and model integration (2.1 and 2.2); Completed DER-CAM modifications and model automation (3.3 and 3.4) – End of Task 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Milestone #2:</td>
<td>On Time</td>
<td>9/30/2017</td>
</tr>
<tr>
<td>By the end of September 2017 this project will be completed, delivering a platform to model system-wide impacts of DER penetration and to suggest optimal DER and microgrid locations, as well as a high level framework to establish DER markets.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DER Siting and Optimization tool for California
Accomplishments to Date

Key achievement: Development of end-to-end software framework prototype
DER Siting and Optimization tool for California

Accomplishments to Date

End-to-end software prototype:
- T&D model for CA
- DER-CAM enhancements & data
- Model integration and APIs
- Visualization

Participation in workshops, meetings, and other stakeholder engagement:
- CPUC and involvement with DRP
 - Attended DRP WG meetings on both ICA & LNBA (8 + 6)
 - Led scoping of validation of ICA methods for long-term refinements, including one-on-one discussions with PG&E, CPUC Office of Ratepayer Advocates, SolarCity, and IREC
- Presented validation approach to the DRP WG
- Briefed DRP WG on the GMLC Project
- Technical advisory committee including CPUC and industry representatives
Recommendation

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate of results with the Valuation work (1.2.4)</td>
<td>Engaged with the 1.2.4 project; Identified implementation strategy (Demonstration Case)</td>
</tr>
<tr>
<td>Determine connections with the Regional Partnership in Vermont</td>
<td>Engaged with the 1.3.10 project; Discussed complementarities and analysis methods for different use cases; strategy for coordination</td>
</tr>
<tr>
<td>Discuss implication of the new DRP</td>
<td>DRP focuses on short-term applications; Integration of 1.3.5 targets “long-term long-term” refinements (CPUC)</td>
</tr>
<tr>
<td>Let DOE when Annual Milestone #1 is complete</td>
<td>Annual milestone progress presented via webinar; Submitted supporting documentation</td>
</tr>
<tr>
<td>When will this tool be posted online?</td>
<td>July 2017 (aligned with Demonstration Case)</td>
</tr>
</tbody>
</table>
DER Siting and Optimization tool for California
Project Integration and Collaboration

(SUNSHOT) CyDER – A Cyber Physical Co-Simulation Platform for Distributed Energy Resources in Smart Grids

CyDER: interconnection and short-term operations using real-time data (PGE)
1.3.5: long-term planning for all of California, behind-the-meter DER dispatch, and policy applications

- Data sharing; Complementary in scale (space and time), and granularity

1.3.22 - Technical Support to NY REV
1.3.5 will provide access to DER-CAM and all other project developments
BNL is leading 1.3.22 and also participating in 1.3.5
- Demonstration Case; Technology Transfer

1.4.15 Development of Integrated Transmission, Distribution and Communication Models
LLNL is participating in both 1.3.5 and 1.4.15
- Technology Transfer

1.2.4 Grid Services and Technologies Valuation Framework
LBNL, NREL, ANL are participating in both 1.3.5 and 1.2.4
- Integrate Valuation Framework in Demonstration Case

Communications:
Active participation in ICA and LNBA WG meetings (14 total)
Presentation to CPUC / DRP WG
Next steps:

Task 5 - Project demonstration DER Market Concepts [Apr – Sep]
- Demonstration Case (early start)
- Application in Policy scenarios
- Market Concept Development

Task 6 - Dissemination and Training [Jun – Aug]
- Documentation & Training

Possible additions or expansions:
- Integration of AMI data
- Integration with grid expansion models (LNBA)
- Application in different territories
DISCUSSION

DER Siting and Optimization tool for California